
Spintop OpenHTF

May 21, 2020

Contents:

1 Getting Started 1
1.1 Basic Concepts . 1
1.2 Python Installation . 3

2 Reference 5
2.1 Test Plan . 5
2.2 Configuration . 9
2.3 Plugs . 11

3 1. First Testbench Tutorial 17
3.1 Running a First Test Bench . 17

4 2. Web Interface Tutorial 19
4.1 Exploration of the Interface . 19
4.2 Exploration of Past Results . 21

5 3. Forms and Tester Feedback Tutorial 25
5.1 Using Custom Forms . 25
5.2 Extracting Data from the Custom Forms Responses . 27
5.3 Form Reference . 28

6 4. Test Bench Definition Tutorial 33
6.1 Trigger Phase . 33
6.2 Test Case Declaration . 37
6.3 Logging in the Test Bench . 37
6.4 Test Flow Management . 40

7 5. Test Bench Documentation Tutorial 49
7.1 Documenting a Test Case . 49

8 6. Proposed Project Structure 51
8.1 Test Bench Source Files Categories . 51
8.2 Proposed Single-Repository Structure . 53
8.3 Proposed Multiple-Repository Structure . 54

9 7. Test Bench Configuration Tutorial 61
9.1 Static configuration . 61
9.2 Test Station Configuration . 62

i

10 8. Plugs Tutorial 65
10.1 About Plugs . 65
10.2 Using Plugs . 66
10.3 Creating Plugs . 66
10.4 Wrapping spintop-openhtf Plugs . 67

11 9. Test Criteria Tutorial 69
11.1 Defining Test Criteria . 69
11.2 Criteria types . 70
11.3 Documentation . 71
11.4 Using a criteria definition file . 71
11.5 Dynamic Test Criteria . 72

12 10. Test Results Tutorial 75
12.1 Exploring the Test Results . 75
12.2 Appending Data to Test Record . 78

13 Indices and tables 81

Python Module Index 83

Index 85

ii

CHAPTER 1

Getting Started

1.1 Basic Concepts

We first introduce the basic spintop-openhtf concepts with which test benches can be created.

1.1.1 Test plan

In the context of a test bench implementation on spintop-openhtf, the test plan is the object to which the test phases
are loaded and which executes them.

See Running a First Test Bench.

1.1.2 Test phases

The test phases implement the different test cases. They are defined and loaded in the test plan object which executes
them one after the other

See test-case-label.

1.1.3 Test Sequences

The test sequences are intermediary levels of test phases between the test plan and the test cases. They can help
implement complex test hierarchies.

See test-hierarchy-label.

1.1.4 Trigger phase

The trigger phase refers to the first phase of the test bench, in which the dynamic configuration of the test is loaded.
Such information can be for example:

1

Spintop OpenHTF

• The operator name

• The board or system serial number

• The board or system device type

• The test type to execute on the board or system

See trigger-phase-label.

1.1.5 Test flow management

Test flow management refers to the dynamic selection of which test cases are executed depending on the inputs given at
the beginning of the test bench in the trigger phase and by the results of the test themselves. Such inputs that determine
test flow are for example the Device Under Test type and a FAIL result of a critical test.

See test-flow-label.

1.1.6 Configuration

The configuration refers to all predetermined parameters used to control the flow or the execution of the test. The
different configuration types are:

• The parameters configuring the test station itself, that is parameters changing from station to station and test jig
to test jig, such as ip adresses, com port, etc.

• The parameters statically configuring the execution of the test plan, such as for example, the maximum number
of iterations for a calibration algorithm.

• The parameters dynamically configuring the execution of the test plan, such as those gathered in the trigger
phase.

See static-config-label and teststation-config-label

1.1.7 Forms

Forms are use to interact with the test operator. They permit the implementation of complex dialogs which allow to
operator to both execute manual operations on the test jig to allow the test to continue or to input test result data for
verification,

See Using Custom Forms.

1.1.8 Plugs

In the spintop-openhtf context, plugs allow the iteraction of the test logic with the surrounding test equipment. They
basically wrap the access to the test equipment automation libraries.

See About Plugs.

1.1.9 Criteria & measures

The criteria refer to the thresholds against which measures are compared to declare a test case PASS or FAIL. In the
spintop-openhtf context, the measures module implements the criteria and the comparison against the selected values.

See Defining Test Criteria.

2 Chapter 1. Getting Started

Spintop OpenHTF

1.1.10 Results

The spintop-openhtf framework outputs a standardized test result record for each test.

See results-label.

1.2 Python Installation

To install spintop-openhtf, you need Python. We officially support Python 3.6+ for now. If you already have Python
installed on your PC, you can skip this step. Officially supported OSes are:

• Windows 10

Install Python using the Windows Installer: https://www.python.org/downloads/windows/

• Raspbian & Ubuntu

Install through apt-get

1.2.1 IDE: VS Code with Extensions

We use and recommend Visual Studio Code for the development of spintop-openhtf testbenches. Using it will allow
you to:

• Seamlessly debug with breakpoints the code you will be writting

• Remotely develop on a Raspberry Pi if you wish to

• Use a modern, extendable and free IDE

Installation

1. Download VS Code

2. Run and follow the installation executable

3. Install the Python Extension

1.2.2 Project Folder, Virtual Env & Installation (Windows)

First, create or select a folder where you want your sources to lie in.

Once you have your base python available, best practices are to create a virtualenv for each testbench you create. We
will use python as the python executable, but if you installed a separate, non-path python 3 for example, you should
replace that with your base executable.

Here are the installation steps on Windows:

1. Create Folder

mkdir myproject
cd myproject

2. Create venv

1.2. Python Installation 3

https://badge.fury.io/py/spintop-openhtf
https://www.python.org/downloads/windows/
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-python.python

Spintop OpenHTF

Creates new venv in the folder 'venv'
python -m venv venv
venv\Scripts\activate

3. Install spintop-openhtf

python -m pip install spintop-openhtf[server]

4 Chapter 1. Getting Started

CHAPTER 2

Reference

2.1 Test Plan

class spintop_openhtf.TestPlan(name: str = ’testplan’, store_result: bool = True)
The core spintop-openhtf interface to create an openhtf sequence.

TestPlan simplifies the creating of openhtf sequences. Instead of declaring functions and adding them as an
array to openhtf, the test plan allows declarative addition of function using decorators.

The TestPlan is itself a TestSequence and therefore implements all methods defined there.

In OpenHTF, you would do the following:

import openhtf as htf

@htf.plug(my_plug=...)
def example_test(test, my_plug):

time.sleep(.2)

@htf.plug(my_plug=...)
def example_test2(test, my_plug):

time.sleep(.2)

test = htf.Test(example_test, example_test2)
test.run() # Run once only

With the TestPlan, you can do the following (equivalent):

from spintop_openhtf import TestPlan

plan = TestPlan('my-test-name')

@plan.testcase('Test1')
@plan.plug(my_plug=...)
def example_test(test, my_plug):

(continues on next page)

5

Spintop OpenHTF

(continued from previous page)

time.sleep(.2)

@plan.testcase('Test2')
@plan.plug(my_plug=...)
def example_test2(test, my_plug):

time.sleep(.2)

plan.run_once()

Parameters

• name – The name of the test plan. Used to identify the ‘type’ of the test.

• store_result – Whether results should automatically be stored as JSON in the spin-
top_openhtf site directory.

add_callbacks(*callbacks)
Add custom callbacks to the underlying openhtf test.

Parameters callbacks – The callbacks to add.

execute()
Execute the configured test using the test_start function as a trigger.

execute_test
Returns a function that takes no arguments and that executes the test described by this test plan.

history_path
The base path where results of the tests defined by this object are stored.

image_url(url: str)→ str
Creates a temporary hosted image based on the specified file path.

Parameters url – The image path.

Returns The temporary url associated with this image. Can be used in custom forms to show
images.

is_runnable
Whether this test plan contains any runnable phases.

no_trigger()
Removes the need for a trigger and removes the default trigger.

plan = TestPlan('my-plan')
plan.no_trigger()

...

plan.run() # Will start immediately.

run(launch_browser=True, once=False)
Run this test with the OpenHTF frontend.

Parameters

• launch_browser – When True, a browser page will open automatically when this is
called.

• once – When False, the test will run in a loop; i.e. when a test ends a new one will start
immediately.

6 Chapter 2. Reference

Spintop OpenHTF

run_once(launch_browser=True)
Shortcut for run() with once=True.

trigger(name: str, **options)
Decorator factory for the trigger phase.

Similar to testcase(), except that this function will be used as the test trigger.

The test trigger is a special test phase that is executed before test officialy start. Once this phase is complete,
the test will start. Usually used to configure the test with the DUT id for example.

trigger_phase
Returns the defined

class spintop_openhtf.TestSequence(name)
The base sequence object: defines a sequence of setup, test and teardown openhtf phases.

TestSequences can be nested together in two different ways:

Option 1. If the sequence should be re-usable, create an explicit TestSequence object and add setup(),
testcase() and teardown() phases using the decorator methods. Afterwards, add it to a specific
TestPlan (or sub TestSequence) using append():

from spintop_openhtf import TestSequence, TestPlan

my_sequence = TestSequence('my-sequence')

@my_sequence.testcase('Test1')
def do_something(test):

pass

Elsewhere probably

plan = TestPlan('my-plan')
plan.append(my_sequence)

Option 2. If the sequence is defined simply to nest phases inside the same test plan, the sub_sequence()
simplifies the declaration and usage of a sub sequence. This code block is equivalent to the previous one,
but does not allow re-usage of the sub_sequence object:

from spintop_openhtf import TestPlan

plan = TestPlan('my-plan')

my_sequence = plan.sub_sequence('my-sequence')

@my_sequence.testcase('Test1')
def do_something(test):

pass

Since TestPlans are TestSequences, and sub sequences are also TestSequences, they can be infinitely nested
using append() and sub_sequence().

Parameters name – The name of this test node.

append(*phases)
Append normal phases (or sequences) to this test plan.

Parameters phases – The phases to append.

measures(*args, **kwargs)
Helper method: shortcut to openhtf.measures()

2.1. Test Plan 7

Spintop OpenHTF

plug(*args, **kwargs)
Helper method: shortcut to openhtf.plug()

setup(name, **options)
Decorator factory for a setup function.

A setup function will executed if the sequence is entered. All setup functions are executed before the
testcases, regardless of the order of declaration.

See testcase() for usage.

sub_sequence(name)
Create new empty TestSequence and append it to this sequence.

The following two snippets are equivalent:

my_sequence = TestSequence('Parent')
sub_sequence = my_sequence.sub_sequence('Child')

my_sequence = TestSequence('Parent')
sub_sequence = TestSequence('Child')
my_sequence.append(sub_sequence)

teardown(name, **options)
Decorator factory for a teardown phase.

A teardown function will always be executed if the sequence is entered, regardless of the outcome of
normal or setup phases.

See testcase() for usage.

testcase(name, **options)
Decorator factory for a normal phase.

A testcase function is a normal openhtf phase.

The options parameter is a proxy for the PhaseOptions arguments.

my_sequence = TestSequence('Parent')

@my_sequence.testcase('my-testcase-name')
def setup_fn(test):

(...)

Options used to override default test phase behaviors.

name
Override for the name of the phase. Can be formatted in several different ways as defined in
util.format_string.

timeout_s
Timeout to use for the phase, in seconds.

run_if
Callback that decides whether to run the phase or not; if not run, the phase will also not be logged.
Optionally, this callback may take a single parameter: the test.state dictionnary. This allows dynamic
test selection based on variables in the user defined state.

requires_state
If True, pass the whole TestState into the first argument, otherwise only the TestApi will be passed in.
This is useful if a phase needs to wrap another phase for some reason, as PhaseDescriptors can only
be invoked with a TestState instance.

8 Chapter 2. Reference

Spintop OpenHTF

repeat_limit
Maximum number of repeats. None indicates a phase will be repeated infinitely as long as PhaseRe-
sult.REPEAT is returned.

run_under_pdb
If True, run the phase under the Python Debugger (pdb). When setting this option, increase the phase
timeout as well because the timeout will still apply when under the debugger.

Example Usages: @PhaseOptions(timeout_s=1) def PhaseFunc(test):

pass

@PhaseOptions(name=’Phase({port})’) def PhaseFunc(test, port, other_info):

pass

2.2 Configuration

2.2.1 Config Module

A singleton class to replace the ‘conf’ module.

This class provides the configuration interface described in the module docstring. All attribuets/methods must not
begin with a lowercase letter so as to avoid naming conflicts with configuration keys.

exception openhtf.util.conf.ConfigurationInvalidError
Indicates the configuration format was invalid or couldn’t be read.

class openhtf.util.conf.Declaration(*args, **kwargs)
Record type encapsulating information about a config declaration.

exception openhtf.util.conf.InvalidKeyError
Raised when an invalid key is declared or accessed.

exception openhtf.util.conf.KeyAlreadyDeclaredError
Indicates that a configuration key was already declared.

exception openhtf.util.conf.UndeclaredKeyError
Indicates that a key was required but not predeclared.

exception openhtf.util.conf.UnsetKeyError
Raised when a key value is requested but we have no value for it.

2.2.2 Built-in Configuration Keys

class spintop_openhtf.testplan._default_conf.ConfigHelpText

plug_teardown_timeout_s
Timeout (in seconds) for each plug tearDown function if > 0; otherwise, will wait an unlimited time.

Default Value= 0

allow_unset_measurements
If True, unset measurements do not cause Tests to FAIL.

Default Value= False

2.2. Configuration 9

Spintop OpenHTF

station_id
The name of this test station

Default Value= ‘build-11085885-project-581279-spintop-openhtf’

cancel_timeout_s
Timeout (in seconds) when the test has been cancelledto wait for the running phase to exit.

Default Value= 2

stop_on_first_failure
Stop current test execution and return Outcome FAILon first phase with failed measurement.

Default Value= False

capture_source
Whether to capture the source of phases and the test module. This defaults to False since this potentially
reads many files and makes large string copies. If True, will capture docstring also. Set to ‘true’ if you
want to capture your test’s source.

Default Value= False

capture_docstring
Whether to capture the docstring of phases and the test module. If True, will capture docstring. Set to
‘true’ if you want to capture your test’s docstring.

Default Value= False

teardown_timeout_s
Default timeout (in seconds) for test teardown functions; this option is deprecated and only applies to the
deprecated Test level teardown function.

Default Value= 30

user_input_enable_console
If True, enables user input collection in console prompt.

Default Value= False

frontend_throttle_s
Min wait time between successive updates to the frontend.

Default Value= 0.15

station_server_port
Port on which to serve the app. If set to zero (the default) then an arbitrary port will be chosen.

Default Value= 0

station_discovery_address
(no description)

Default Value= None

station_discovery_port
(no description)

Default Value= None

station_discovery_ttl
(no description)

Default Value= None

10 Chapter 2. Reference

Spintop OpenHTF

2.3 Plugs

2.3.1 Base Interface

class spintop_openhtf.plugs.base.UnboundPlug
A generic interface base class that allows intelligent creation of OpenHTF plugs without limiting its usage to
OpenHTF.

logger
If inside an OpenHTF plug, this is the OpenHTF provided logger. If not, it is a logger with the object ID
as name.

classmethod as_plug(name, **kwargs_values)
Create a bound plug that will retrieve values from conf or the passed values here.

Take SSHInterface for example.

from spintop_openhtf.plugs import from_conf
from spintop_openhtf.plugs.ssh import SSHInterface

MySSHInterface = SSHInterface.as_plug(
'MySSHInterface', # The name of this plug as it will appear in logs
addr=from_conf(# from_conf will retrieve the conf value named like this.

'my_ssh_addr',
description="The addr of my device."

),
username='x', # Always the same
password='y' # Always the same

)

close()
Abstract method: Close resources related to this interface.

close_log()
Close all logger handlers.

log_to_filename(filename, **kwargs)
Create and add to logger a FileHandler that logs to filename.

log_to_stream(stream=None, **kwargs)
Create and add to logger a StreamHandler that streams to stream

open(*args, **kwargs)
Abstract method: Open resources related to this interface.

tearDown()
Tear down the plug instance. This is part of the OpenHTF Plug contract

2.3.2 COM Port Interface

class spintop_openhtf.plugs.comport.ComportInterface(comport, baudrate=115200)
An interface to a comport.

Allows reading and writing. A background thread reads any data that comes in and those lines can be accessed
using the next_line function.

classmethod as_plug(name, **kwargs_values)
Create a bound plug that will retrieve values from conf or the passed values here.

2.3. Plugs 11

Spintop OpenHTF

Take SSHInterface for example.

from spintop_openhtf.plugs import from_conf
from spintop_openhtf.plugs.ssh import SSHInterface

MySSHInterface = SSHInterface.as_plug(
'MySSHInterface', # The name of this plug as it will appear in logs
addr=from_conf(# from_conf will retrieve the conf value named like this.

'my_ssh_addr',
description="The addr of my device."

),
username='x', # Always the same
password='y' # Always the same

)

clear_lines()
Clear all lines in the buffer.

close()
Attempts to close the serial port if it exists.

close_log()
Close all logger handlers.

com_target(*args, **kwargs)
Alias for message_target

connection_lost(exc)
Called when the connection is lost or closed.

The argument is an exception object or None (the latter meaning a regular EOF is received or the connec-
tion was aborted or closed).

connection_made(transport)
Called when a connection is made.

The argument is the transport representing the pipe connection. To receive data, wait for data_received()
calls. When the connection is closed, connection_lost() is called.

data_received(data)
Called when some data is received.

The argument is a bytes object.

eof_received()
Called when the other end calls write_eof() or equivalent.

If this returns a false value (including None), the transport will close itself. If it returns a true value, closing
the transport is up to the protocol.

execute_command(command=None, timeout=None, target=None)
Adds the self.eol to command and call message_target using either target as target or self._target if defined.
This is used for executing commands in a shell-like environment and to wait for the prompt. self._target
or target should be the expected prompt.

keep_lines(lines_to_keep)
Clear all lines in the buffer except the last lines_to_keep lines.

log_to_filename(filename, **kwargs)
Create and add to logger a FileHandler that logs to filename.

log_to_stream(stream=None, **kwargs)
Create and add to logger a StreamHandler that streams to stream

12 Chapter 2. Reference

Spintop OpenHTF

message_target(message, target, timeout=None, keeplines=0, _timeout_raises=True)
Sends the message string and waits for any string in target to be received.

Parameters

• message – The string to write into the io interface

• target – A string or a list of string to check for in the read lines.

• timeout – (default=None, no timeout) Wait up to this seconds for the targets. If busted,
this will raise a IOTargetTimeout.

• keeplines – (default=0, discard all) Before sending the message, call self.keep_lines
with this value.

• _timeout_raises – (default=True) If True, a timeout will raise an error.

next_line(timeout=10)
Waits up to timeout seconds and return the next line available in the buffer.

open(_serial=None)
Opens the serial port using the comport and baudrate object attributes.

Parameters _serial – Optionnal underlying serial.Serial object to use. Used for mock
testing.

pause_writing()
Called when the transport’s buffer goes over the high-water mark.

Pause and resume calls are paired – pause_writing() is called once when the buffer goes strictly over
the high-water mark (even if subsequent writes increases the buffer size even more), and eventually re-
sume_writing() is called once when the buffer size reaches the low-water mark.

Note that if the buffer size equals the high-water mark, pause_writing() is not called – it must go strictly
over. Conversely, resume_writing() is called when the buffer size is equal or lower than the low-water
mark. These end conditions are important to ensure that things go as expected when either mark is zero.

NOTE: This is the only Protocol callback that is not called through EventLoop.call_soon() – if it were,
it would have no effect when it’s most needed (when the app keeps writing without yielding until
pause_writing() is called).

resume_writing()
Called when the transport’s buffer drains below the low-water mark.

See pause_writing() for details.

tearDown()
Tear down the plug instance.

write(string)
Write the string into the io interface.

2.3.3 SSH Interface

class spintop_openhtf.plugs.ssh.SSHInterface(addr, username, password, cre-
ate_timeout=3, port=22)

An interface to an SSH Server.

class SSHResponse(exit_code: int, err_output: str, std_output: str)

err_output = None
The command stderr output

2.3. Plugs 13

Spintop OpenHTF

exit_code = None
The command exit code

output
Combines both the err output and the std_output.

std_output = None
The command stdout output

classmethod as_plug(name, **kwargs_values)
Create a bound plug that will retrieve values from conf or the passed values here.

Take SSHInterface for example.

from spintop_openhtf.plugs import from_conf
from spintop_openhtf.plugs.ssh import SSHInterface

MySSHInterface = SSHInterface.as_plug(
'MySSHInterface', # The name of this plug as it will appear in logs
addr=from_conf(# from_conf will retrieve the conf value named like this.

'my_ssh_addr',
description="The addr of my device."

),
username='x', # Always the same
password='y' # Always the same

)

close()
Abstract method: Close resources related to this interface.

close_log()
Close all logger handlers.

execute_command(command: str, timeout: float = 60, stdin: List[T] = [], get_pty: bool = False,
assertexitcode: Union[List[int], int, None] = 0)

Send a command and wait for it to execute.

Parameters

• command – The command to send. End of lines are automatically managed. For example
execute_command(‘ls’) will executed the ls command.

• timeout – The timeout in second to wait for the command to finish executing.

• stdin – A list of inputs to send into stdin after the command is started. Each entry in this
list will be separated with an r’n’ character.

• get_pty – Usually required when providing stdin.

• assertexitcode – Unless this is None, defines one or a list of exit codes that are
expected. After the command is executed, an SSHError will be raised if the exit code is
not as expected.

Raises

• SSHTimeoutError – Raised when timeout is reached.

• SSHError – Raised when the exit code of the command is not in assertexitcode
and assertexitcode is not None.

log_to_filename(filename, **kwargs)
Create and add to logger a FileHandler that logs to filename.

14 Chapter 2. Reference

Spintop OpenHTF

log_to_stream(stream=None, **kwargs)
Create and add to logger a StreamHandler that streams to stream

open(_client=None)
Abstract method: Open resources related to this interface.

tearDown()
Tear down the plug instance. This is part of the OpenHTF Plug contract

2.3. Plugs 15

Spintop OpenHTF

16 Chapter 2. Reference

CHAPTER 3

1. First Testbench Tutorial

3.1 Running a First Test Bench

Let’s create our first testbench and explore the basic concept of the test plan.

Create a file called main.py in the folder in which you installed spintop-openhtf and copy this code.

3.1.1 Basic Testbench

main.py
from openhtf.plugs.user_input import UserInput
from spintop_openhtf import TestPlan

""" Test Plan """

This defines the name of the testbench.
plan = TestPlan('hello')

@plan.testcase('Hello-Test')
@plan.plug(prompts=UserInput)
def hello_world(test, prompts):

prompts.prompt('Hello Operator!')
test.dut_id = 'hello' # Manually set the DUT Id to same value every test

if __name__ == '__main__':
plan.no_trigger()
plan.run()

In the code above, a test plan is first declared.

plan = TestPlan('hello')

Then, a test case is declared and added to the test plan.

17

Spintop OpenHTF

@plan.testcase('Hello-Test')
@plan.plug(prompts=UserInput)
def hello_world(test, prompts):

prompts.prompt('Hello Operator!')
test.dut_id = 'hello' # Manually set the DUT Id to same value every test

And finally the test plan is executed when the script is launched.

if __name__ == '__main__':
plan.no_trigger()
plan.run_console()

This simple test bench will simply interact with the operator by telling him Hello Operator!. Run it using the created
virtual environment :

Windows Activate
venv\Scripts\activate

python main.py

This test bench does not use the spintop-openhtf GUI therefore all interactions are made through the command line.
The test prints Hello Operator! and indicates a PASS.

(venv) C:\GIT_TACK\doc_exp>python main.py
Hello Operator!
-->

================ test: hello outcome: PASS ================

Tutorial source

18 Chapter 3. 1. First Testbench Tutorial

CHAPTER 4

2. Web Interface Tutorial

spintop-openhtf uses a web interface to interact with the test operator.

• It guides him or her through the manual operations to perform on the test bench.

• It displays the logs and the results of all test phases as well as for the complete test bench.ùs

4.1 Exploration of the Interface

Let’s explore the web application. To do so, make sure you have gone through the Running a First Test Bench tutorial.
Modify it, replacing the main to run with the web application.

if __name__ == '__main__':
plan.no_trigger()
plan.run()

Run the new testbench. The web interface should load automatically in your default browser. The following image
indicates the different sections of the web interface.

19

Spintop OpenHTF

1. The Operator Input section is where the prompts and forms are showcased. The Hello Operator! prompt defines
in the test bench appears.

2. The test will continue (and end) when the tester clicks on the Okay button.

3. The test is shown as running with the elapsed time displayed in real time.

4. The current phase being executed is displayed. The current testbench holds only one test phase. In more complex
test plans, the executed and to be executed phases are displayed to facilitate the operator following the test.

5. The test logs list the different operations executed by the test bench as well as the information that was decided
to be logged by the test developer.

20 Chapter 4. 2. Web Interface Tutorial

img/web.png

Spintop OpenHTF

4.2 Exploration of Past Results

Run the test a few more times, clicking OKAY again and again until 10 tests are executed. Notice that the web
application logs the past 5 test results on the right of the interface. T

Hit the Expand button on the History box to see all past test results.

4.2. Exploration of Past Results 21

img/web-past.png

Spintop OpenHTF

To access the full results of any of the tests on the list, click on the test you wan to consult. The web application will
load the result and display it, phases, logs and everything.

22 Chapter 4. 2. Web Interface Tutorial

img/web-past-full.png

Spintop OpenHTF

Tutorial source

4.2. Exploration of Past Results 23

img/web-past-selected.png

Spintop OpenHTF

24 Chapter 4. 2. Web Interface Tutorial

CHAPTER 5

3. Forms and Tester Feedback Tutorial

5.1 Using Custom Forms

5.1.1 Introduction

Customizable forms allows spintop-openhtf developers to include complex form inputs in their test plans in order to
interact with the test operators using simple dictionnary definitions. For example, the following form shows an input
field, allowing the tester to enter the measured impedance.

FORM_LAYOUT = {
'schema':{

'title': "Impedance",
'type': "object",
'required': ["impedance"],
'properties': {

'impedance': {
'type': "string",
'title': "Measure Impedance on test point X\nEnter value in Ohms"

},
}

},
'layout':[

"impedance"
]

}

When executed the above form entry will result in the following being displayed on the web interface.

25

Spintop OpenHTF

This FORM_LAYOUT variable contains two top level attributes which are essential to differentiate: schema and
layout. The schema defines the fields while layout defines the ordering and display of these fields.

5.1.2 JSON Schema Forms

The schema part is actually a generic JSON schema vocabulary used to validate JSON documents named *JSON
Schema*.

As quoted from their homepage,

JSON Schema is a vocabulary that allows you to annotate and validate JSON documents.

Example Schema

The format allows you to build the schema of complex JSON structures and afterward validate that a certain JSON
document respects or not that structure. Let’s take the schema part of our previous example:

{
'title': "Impedance",
'type': "object",
'required': ["impedance"],
'properties': {

'impedance': {
'type': "string",
'title': "Measure Impedance on test point X\nEnter value in Ohms"

},
}

}

In order, this defines that:

• "title": "Impedance": The title of this form is ‘Impedance’.

• "type": "object": The type of the top level JSON object is object, which means that it contains other
properties.

• "required": ["impedance]: The property named `impedance is required.

• "properties": {: Begins the list of properties in this object. Note that these are unordered.

• "impedance": { "type": "string", "title": "Measure Impedance on test
point X\nEnter value in Ohms" }

The property named impedance is a string with as label the instructions passed to the operator :
‘Measure Impedance on test point XnEnter value in Ohms’

• And so on.

26 Chapter 5. 3. Forms and Tester Feedback Tutorial

img/normal-form.png
https://json-schema.org/
https://json-schema.org/

Spintop OpenHTF

Note: Of all the keys shown here, only required is specific to JSON Schema Forms. The rest is part of the JSON
Schema format. You can use the following playground to experiment with the forms: JSON Schema Form. However,
the renderer is not the same that spintop-openhtf internally uses and therefore results may vary. You can use the getting
started example in the spintop-openhtf repo for a quick demo with forms.

To add the custom form to the test bench defined previously in the Running a First Test Bench tutorial, first insert the
FORM_LAYOUT definition at the top of the main.py file, then modify the test case definition to use the new custom
form prompts as shown below.

@plan.testcase('Hello-Test')
@plan.plug(prompts=UserInput)
def hello_world(test, prompts):

"""Displays the custom from defined above"""
prompts.prompt_form(FORM_LAYOUT)

Run the testbench again to see the new form appear.

Tutorial source

5.2 Extracting Data from the Custom Forms Responses

The custom forms output a response in the form of a dictionary when the form display returns. The response dictionary
is returned once the operator hits the Okay button.

To gather the response from the form, simply create a ‘response’ variable to receive the prompt return, such as illus-
trated below.

@plan.testcase('Hello-Test')
@plan.plug(prompts=UserInput)
def hello_world(test, prompts):

"""Displays the custom from defined above"""
response = prompts.prompt_form(FORM_LAYOUT)

In the case where the operator enters a value of 1200 Ohms as impedance, the dictionary returned by the will be the
following:

{'impedance': '1200'}

To access the returned value, simply index the dictionary with the key used in the form definition:

test.impedance = response['impedance']

To define different types of custom forms to receive types different responses, refer to the Form Reference article.

Tutorial source

5.2. Extracting Data from the Custom Forms Responses 27

https://gcanti.github.io/resources/json-schema-to-tcomb/playground/playground.html
img/normal-form.png

Spintop OpenHTF

5.3 Form Reference

This page lists the different form types that can be used in a spintop-openhtf test bench.

5.3.1 Example Data

The previous form would then successfully validate the following JSON Data:

{
"firstname": "foo",
"lastname": "bar"

}

This is the dictionnary that is returned when you call UserInput.prompt_form(...).

5.3.2 Layout

The layout aspect of our previous example is specific to JSON Schema Forms, and, more specifically, to the renderer
we use.

Select Choices (Dropdown)

If we re-use the previous form and wish to limit the values allowed for a specific string field, we can use the layout
attribute to impose a select field.

In the following snippet, the simple lastname key is replaced by a complex object which identifies the field using
the "key": "lastname" attribute. By adding the "type": "select" with the titleMap, we impose
specific choices to the user.

This does not make much sense in the case of a last name, but we use the same example for consistency.

FORM_LAYOUT = {
'schema':{

'title': "First and Last Name",
'type': "object",
'required': ["firstname", "lastname"],
'properties': {

'firstname': {
'type': "string",
'title': "First Name"

},
'lastname': {

'type': "string",
'title': "Last Name"

},
}

},
'layout':[

"firstname",
{

"key": "lastname",
"type": "select",
"titleMap": [

{ "value": "Andersson", "name": "Andersson" },

(continues on next page)

28 Chapter 5. 3. Forms and Tester Feedback Tutorial

https://github.com/json-schema-form/angular-schema-form/blob/master/docs/index.md#form-definitions
https://github.com/json-schema-form/angular-schema-form/blob/master/docs/index.md#form-definitions

Spintop OpenHTF

(continued from previous page)

{ "value": "Johansson", "name": "Johansson" },
{ "value": "other", "name": "Something else..."}

]
}

]
}

Radio Buttons

Same example with lastname:

FORM_LAYOUT = {
'schema':{

'title': "First and Last Name",
'type': "object",
'required': ["firstname", "lastname"],
'properties': {

'firstname': {
'type': "string",
'title': "First Name"

},
'lastname': {

'type': "string",
'title': "Last Name"

},
}

},
'layout':[

"firstname",
{

"key": "lastname",
"type": "radiobuttons",
"titleMap": [

{ "value": "one", "name": "One" },
{ "value": "two", "name": "More..." }

]
}

]
}

5.3. Form Reference 29

img/select-form.png
img/radiobuttons-form.png

Spintop OpenHTF

Text

Adding text within the form is very useful to guide or otherwise give more information to the user. This can be done
using the "type": "help" layout.

Note: The markdown function was added in spintop-openhtf version 0.5.5. It transforms the text into HTML, which
is the only understood format of the helpvalue.

from spintop_openhtf.util.markdown import markdown

FORM_LAYOUT = {
'schema':{

'title': "First and Last Name",
'type': "object",
'required': ["firstname", "lastname"],
'properties': {

'firstname': {
'type': "string",
'title': "First Name"

},
'lastname': {

'type': "string",
'title': "Last Name"

},
}

},
'layout':[

"firstname",
{

"type": "help",
"helpvalue": markdown("# Well Hello There!")

},
"lastname

]
}

Images

To seamlessly serve one or more image in your custom form or prompt message, the test plan image_url method
needs to be used. This will create a temporary url that points to the local file you are targeting and allow browsers to
load this image successfully.

30 Chapter 5. 3. Forms and Tester Feedback Tutorial

img/text-form.png

Spintop OpenHTF

Warning: The url returned by image_url is strictly temporary. It represents an in-memory mapping between the
url and the filepath you specified. It follows the lifecycle of the TestPlan object, which means that as long as you
keep the same test plan object, the url will live.

There are no cleanup mecanisms. However, each image is a simple key: value entry in a dictionnary, which means
that its memory footprint is negligible.

from spintop_openhtf.util.markdown import markdown, image_url

plan = TestPlan('examples.getting_started')

helpvalue = markdown("""

Well Hello There

""" % plan.image_url('spinhub-app-icon.png'))

FORM_LAYOUT = {
'schema':{

'title': "First and Last Name",
'type': "object",
'required': ["firstname", "lastname"],
'properties': {

'firstname': {
'type': "string",
'title': "First Name"

},
'lastname': {

'type': "string",
'title': "Last Name"

},
}

},
'layout':[

"firstname",
{

"type": "help",
"helpvalue": helpvalue

},
{

"key": "lastname",
"type": "radiobuttons",
"titleMap": [

{ "value": "one", "name": "One" },
{ "value": "two", "name": "More..." }

]
}

]
}

5.3. Form Reference 31

Spintop OpenHTF

32 Chapter 5. 3. Forms and Tester Feedback Tutorial

img/image-form.png

CHAPTER 6

4. Test Bench Definition Tutorial

6.1 Trigger Phase

The trigger phase is the first phase executed in most test benches. It is a test phase which is outside of the test
execution, meaning it cannot fail and does not consume test execution time. The trigger phase is added by default by
spintop-openhtf. However it was disabled in our first example in the tutorial.

6.1.1 Default Trigger Phase

Let’s start the trigger phase experimentation by removing the trigger phase disable in the test bench main. Replace the
main from the Running a First Test Bench tutorial example by the one below and run the bench again.

if __name__ == '__main__':
plan.run()

The web interface now displays the default trigger phase, asking for a DUT id to start the test.

33

Spintop OpenHTF

1. The DUT id is asked for in the operator input dialog.

2. The current test is displayed as waiting.

3. The Phases dialog now displays the trigger phase as well as our hello-test phase.

Enter DUT1 as the DUT id and press OK. The test will continue to the hello-test phase and display the Hello Operator!
prompt.

1. The DUT id is displayed.

34 Chapter 6. 4. Test Bench Definition Tutorial

img/default-trigger.png
img/default-trigger-done.png

Spintop OpenHTF

2. The trigger phase is marked as executed and passed.

Tutorial source

6.1.2 Custom Trigger Phase

With the custom forms, it is possible to define a custom trigger phase to create a specific dynamic configuration for
your test bench.

Let’s first define what our trigger phase will do. The following information will be asked from the operator:

• The full operator name from a drop down list

• The Device Under Test serial number

• The tested product from a drop down list

The form is defined as the following:

FORM_LAYOUT = {
'schema':{

'title': "Test configuration",
'type': "object",
'required': ["operator, uutid, product"],
'properties': {

'operator': {
'type': "string",
'title': "Enter the operator name"

},
'dutid': {

'type': "string",
'title': "Enter the device under test serial number"

},
'product': {

'type': "string",
'title': "Enter the product name"

}
}

},
'layout':[

"operator", "dutid", "product",
]

}

To call the form in the trigger phase, define a new test case, but instead of using the plan.testcase decorator, use the
plan.trigger one. In the example below, we modified the test case used in the Extracting Data from the Custom Forms
Responses tutorial to define a configuration phase to be used as a trigger, using the custom form defined above.

@plan.trigger('Configuration')
@plan.plug(prompts=UserInput)
def trigger(test, prompts):

"""Displays the configuration form"""
response = prompts.prompt_form(FORM_LAYOUT)
pprint (response)

Since the phase using the custom form is now the trigger, a new test case must be defined to implement the test bench.
A simple sleep test is added for this purpose.

6.1. Trigger Phase 35

Spintop OpenHTF

from time import sleep

@plan.testcase('Sleep')
def sleep_test(test):

"""Waits five seconds"""
sleep(5)

To run the test plan with the new trigger phase, remove the plan.no_trigger() call.

if __name__ == '__main__':
plan.run()

Now run the new test plan. The test will display the following form:

Enter the operator name, the device serial number and the product ID and hit okay. The sleep test will wait 5 seconds
and terminate. The status of the two phases can be seen in the web interface.

As the test bench executes, the following verbose will be outputed on the command line.

36 Chapter 6. 4. Test Bench Definition Tutorial

img/custom-trigger.png
img/custom-trigger-result.png

Spintop OpenHTF

W 01:14:11 test_executor - Start trigger did not set a DUT ID.
W 01:14:16 test_executor - DUT ID is still not set; using default.

This occurs because the trigger phase is designed in part to enter the DUT ID and log it in the test variables. The form
has indeed asked for the DUT ID but has not logged it. Add the following line at the end of the trigger phase and rerun
the test bench.

response = prompts.prompt_form(FORM_LAYOUT)
test.dut_id = response['dutid']

The missing dut id verbose is gone and the id has been logged in the test variables.

Tutorial source

6.2 Test Case Declaration

The different test cases are defined and declared one by one in in the test plan. Let’s review the test case declared in
the Running a First Test Bench tutorial.

The test case is declared as:

@plan.testcase('Hello-Test')
@plan.plug(prompts=UserInput)
def hello_world(test, prompts):

prompts.prompt('Hello Operator!')
test.dut_id = 'hello' # Manually set the DUT Id to same value every test

spintop-openhtf uses the name “test phase” to refer to the different test cases in the test bench.

6.3 Logging in the Test Bench

A python logger is available in the test object which is passed in arguments to the test case function. Define a new test
case for the logger test and setup the logger to log a test string.

@plan.testcase('Logger Test')
def logger_test(test):

test.logger.info('This is a logging test string')

Run the test bench to see the new string in the test logs. In the web application logger space, the logged test string can
be seen.

6.2. Test Case Declaration 37

Spintop OpenHTF

To better explore what is logged in a test run, we have copied below all the log strings of an execution.

9:47:00 PM - openhtf.core.test_descriptor - Test completed for hello, outputting now.
9:47:00 PM - openhtf.util.threads - Thread finished: TestExecutorThread
9:47:00 PM - openhtf.test_record.
→˓20052:7cf851aa74644abe:a3af22ae36e040b9:1590025613531 - Finishing test execution
→˓normally with outcome PASS.
9:47:00 PM - openhtf.util.threads - Thread finished: <PlugTearDownThread: <class
→˓'openhtf.plugs.user_input.UserInput'>>
9:47:00 PM - openhtf.plugs - Tearing down all plugs.
9:47:00 PM - openhtf.core.phase_executor - Phase Logger Test finished with result
→˓PhaseResult.CONTINUE
9:47:00 PM - openhtf.util.threads - Thread finished: <PhaseExecutorThread: (Logger
→˓Test)>
9:47:00 PM - openhtf.test_record.
→˓20052:7cf851aa74644abe:a3af22ae36e040b9:1590025613531.phase.Logger Test - This is a
→˓logging test string

(continues on next page)

38 Chapter 6. 4. Test Bench Definition Tutorial

img/logger.png

Spintop OpenHTF

(continued from previous page)

9:47:00 PM - openhtf.core.phase_executor - Executing phase Logger Test
9:47:00 PM - openhtf.test_record.
→˓20052:7cf851aa74644abe:a3af22ae36e040b9:1590025613531 - Handling phase Logger Test
9:47:00 PM - openhtf.test_record.
→˓20052:7cf851aa74644abe:a3af22ae36e040b9:1590025613531 - Executing main phases for
→˓hello
9:47:00 PM - openhtf.test_record.
→˓20052:7cf851aa74644abe:a3af22ae36e040b9:1590025613531 - Entering PhaseGroup hello
9:47:00 PM - openhtf.core.phase_executor - Phase trigger_phase finished with result
→˓PhaseResult.CONTINUE
9:47:00 PM - openhtf.util.threads - Thread finished: <PhaseExecutorThread: (trigger_
→˓phase)>
9:47:00 PM - openhtf.plugs.user_input - Responding to prompt
→˓(d6faa8b3bf654f109a8fb6e62c076541): "{'content': {'_input': '1'}, 'option': 'OKAY'}"
9:46:55 PM - openhtf.output.servers.pub_sub - New subscriber from ::1.
9:46:53 PM - openhtf.plugs.user_input - Displaying prompt
→˓(d6faa8b3bf654f109a8fb6e62c076541): "{'schema': {'title': 'Generic Input', 'type':
→˓'object', 'required': ['_input'], 'properties': {'_input': {'type': 'string', 'title
→˓': 'Enter a DUT ID in order to start the test.'}}}}"
9:46:53 PM - openhtf.core.phase_executor - Executing phase trigger_phase

For each entry is logged

• the time of the entry

• the logging module

• the log string itself

Among the log entries, can be seen the following information:

The phase executor module declaring the start and end of each phase or test cases. In the phase end entry the phase
result is declared. Phases and phase results are explained further in this tutorial.

• openhtf.core.phase_executor - Executing phase trigger_phase

– openhtf.core.phase_executor - Phase trigger_phase finished with result PhaseResult.CONTINUE

The added test string from our test bench

• openhtf.test_record.20052:7cf851aa74644abe:a3af22ae36e040b9:1590025613531.phase.Logger Test - This is
a logging test string

The information regarding our user input form including the returned dictionary

• openhtf.plugs.user_input - Displaying prompt (d6faa8b3bf654f109a8fb6e62c076541): “{‘schema’: {‘title’:
‘Generic Input’, ‘type’: ‘object’, ‘required’: [‘_input’], ‘properties’: {‘_input’: {‘type’: ‘string’, ‘title’: ‘Enter
a DUT ID in order to start the test.’}}}}”

The test bench result

• openhtf.test_record.20052:7cf851aa74644abe:a3af22ae36e040b9:1590025613531 - Finishing test execution
normally with outcome PASS.

Further exploration of the logs will be done as the test flow of the test bench is explained.

Tutorial source

6.3. Logging in the Test Bench 39

Spintop OpenHTF

6.4 Test Flow Management

In the context of a spintop-openhtf test bench, test flow management consists in selecting the test cases to execute
dynamically depending on

• the input of the operator during the trigger phase,

• the results and outcomes of the previous test phases.

A test bench can be implemented for a family of product instead of one test bench per product version. In these test
benches, the DUT type selected in the trigger phase will determine which test cases are executed. For example, for
a version, all test cases can be run and for another, a test is removed. Test flow management allows the definition of
such test benches.

6.4.1 Dynamic Test Flow Management with Phase Outcomes

The outcome and result of a phase can impact the execution of the rest of the test benches. Let’s first explore the
concepts of phase outcomes and phase results.

Phase results

The result of a test phase is controlled by the value it returns. The developper can determine through the test logic
which result is returned.

It can return None (or no return statement) for the standard CONTINUE. If an uncatched exception occurs during the
test, the phase will be marked as ERROR. OpenHTF will infer the outcome based on the test phase result.

• PhaseResult.CONTINUE: Causes the framework to process the phase measurement outcomes and execute the
next phase.

• PhaseResult.FAIL_AND_CONTINUE: Causes the framework to mark the phase with a fail outcome and
execute the next phase.

• PhaseResult.REPEAT: Causes the framework to execute the same phase again, ignoring the measurement
outcomes for this instance.

• PhaseResult.SKIP: Causes the framework to ignore the measurement outcomes and execute the next phase.

• PhaseResult.STOP: Causes the framework to stop executing, indicating a failure. The next phases will not be
executed.

Phase outcomes

The outcome of a test phase can be one of the following values, which is determined by the PhaseResult described
above:

• PhaseOutcome.PASS: The phase result was CONTINUE and all measurements validators passed.

• PhaseOutcome.FAIL: The phase result was CONTINUE and one or more measurements outcome failed, or
the phase result was FAIL_AND_CONTINUE or STOP.

• PhaseOutcome.SKIP: The phase result was SKIP or REPEAT.

• PhaseOutcome.ERROR: An uncatched exception was raised, and that exception is not part of the
failure_exceptions list. The test will stop in such a case.

40 Chapter 6. 4. Test Bench Definition Tutorial

Spintop OpenHTF

Although you should not need to import this enum for test sequencing, you can import it using from openhtf.
core.test_record import PhaseOutcome. Usage would be to analyze results.

Phase outcomes are inherited through all levels by the parent phase up to the test plan itself.

Difference between outcome and result

Simply put,

• the phase outcome determines if the phase has failed or passed, and is propagated to all parent phases.

• the phase result first creates the phase outcome and then dictates the remaining test flow.

The phase results impact on the test flow is discussed and examplified in details below.

6.4.2 Managing the Test Flow Based on Phase Results

The phase results can be used by the test bench developper to manipulate the flow of the test bench based on interme-
diary results.

PhaseResult.STOP

The PhaseResult.STOP result can be imposed by the developper in the case of the failure of a critical test. Tests
are critical when continuing the test after a failure could be dangerous for the unit under test and the test bench. The
developper could also decide to terminate the test on a failure when continuing would be a waste of time. The flow
management based on phase results allows the termination of the test bench on such a critical phase failure.

PhaseResult.FAIL_AND_CONTINUE

The PhaseResult.FAIL_AND_CONTINUE result is used to mark a phase as failed when no other element of the test
would indicate it (criteria or exceptions). The developper uses it as the return code.

As an example, it is decided to return a failure in product “B” is selected in the trigger phase.

from openhtf import PhaseResult

@plan.testcase('Sleep')
def sleep_test(test):

"""Waits five seconds"""
sleep(5)
if test.state["product"] == "A":

return PhaseResult.CONTINUE
elif test.state["product"] == "B":

return PhaseResult.FAIL_AND_CONTINUE

PhaseResult.REPEAT

The PhaseResult.REPEAT result can be used to retry non-critical tests. Some tests can be retried until they pass
(with a maximum retry number), without endangering the quality of the product. For example a calibration algorithm
that converges through multiple tries.

In the case the developper requires a repeat of the test for it to converge to a PASS, the return code is used. The
repeat_limit option is used to limit the number of retries. If the PhaseResult.REPEAT is returned once more than the
phase’s ‘repeat_limit*, this will be treated as a PhaseResult.STOP.

6.4. Test Flow Management 41

Spintop OpenHTF

As an example, we create a test which generates a random number between 1-10 and declares a PASS if the result is 8
or higher. The test will fail 70% of the time, but will be repeated until it passes, if the PASS appears within 5 retries.

from openhtf import PhaseResult
import random

@plan.testcase('Random')
def random_test(test, repeat_limit = 5):

"""Generate a random number between 1 and 10. If number is 8, 9, or 10 it is a
→˓PASS. If not repeat"""

val = random.randint(1, 10)
print (val)
if val >= 8:

return PhaseResult.CONTINUE
else:

return PhaseResult.REPEAT

The following is an excerpt of a log of a 5 retries test

Handling phase Random
Executing phase Random
3
Thread finished: <PhaseExecutorThread: (Random)>
Phase Random finished with result PhaseResult.REPEAT
Executing phase Random
2
Thread finished: <PhaseExecutorThread: (Random)>
Phase Random finished with result PhaseResult.REPEAT
Executing phase Random
3
Thread finished: <PhaseExecutorThread: (Random)>
Phase Random finished with result PhaseResult.REPEAT
Executing phase Random
7
Thread finished: <PhaseExecutorThread: (Random)>
Phase Random finished with result PhaseResult.REPEAT
Executing phase Random
9
Thread finished: <PhaseExecutorThread: (Random)>
Phase Random finished with result PhaseResult.CONTINUE

PhaseResult.SKIP

The PhaseResult.SKIP result can be used by the developper to ignore a phase, depending on what goes on inside.
Let’s merge our last two examples, to create a test where, if product “A” is entered, the random test is executed and
logged, and if product “B” is entered, the random test is executed but its result is ignored. No repeats are allowed.

from openhtf import PhaseResult
import random
@plan.testcase('Random')
def random_test(test):

"""Generate a random number between 1 and 10.

If number is 8, 9, or 10 it is a PASS. If not repeat"""
val = random.randint(1, 10)
print (val)

(continues on next page)

42 Chapter 6. 4. Test Bench Definition Tutorial

Spintop OpenHTF

(continued from previous page)

if test.state["product"] == "A":
if val >= 8:

return PhaseResult.CONTINUE
else:

return PhaseResult.FAIL_AND_CONTINUE
elif test.state["product"] == "B":

return PhaseResult.SKIP

The following are two log excerpts. The first one for product “A”, the second for product “B”.

Executing phase Random 2
7
Thread finished: <PhaseExecutorThread: (Random 2)>
Phase Random 2 finished with result PhaseResult.FAIL_AND_CONTINUE

Executing phase Random 2
7
Thread finished: <PhaseExecutorThread: (Random 2)>
Phase Random 2 finished with result PhaseResult.SKIP

Interpreting exceptions as failures

Normally, exceptions are catched by spintop-openhtf which translates them to a PhaseOutcome.ERROR outcome.
To identify certain exceptions as a FAIL instead of as an error, you can add failure exceptions to the test plan.

test_plan = TestPlan()
test_plan.failure_exceptions += (Exception,)

@test_plan.testcase('test1')
def my_test(test):

raise Exception('!!') # Will mark phase as FAIL instead of ERROR.

Tutorial source

6.4.3 Test Hierarchy

To build comprehensive test benches it is important to define a test hierarchy. We have already explored the declaration
of a test case within a test plan, which creates a 2-level hierarchy. As we have defined our test benches, the test plan
inherits the status of the underlying test cases. If a test case fails, the test plan fails. The test bench does not need to
remain a 2-level hierarchy. The test plan can be comprised of complex test sequences which in turn are comprised of
sub-sequences, testcases and so on.

Test Plan
Sequence 1

Sub-sequence 1A
Testcase 1A-1
Testcase 1A-2
Testcase 1A-3

Sub-sequence 1B
Testcase 1B-1
Testcase 1B-2

Sequence 2
Sub-sequence 2A

(continues on next page)

6.4. Test Flow Management 43

Spintop OpenHTF

(continued from previous page)

Testcase 2A-1
Testcase 2A-2

Each level inherits the status of the underlying levels. They are all test phases and their statuses are defined by the
phase outcome.

6.4.4 Defining Sequences or PhaseGroups

Spintop-openhtf uses PhaseGroup objects to instanciate test sequences. To define a test sequence within your test
plan, simply use the TestSequence module.

from spintop_openhtf import TestPlan, TestSequence

sequence = TestSequence('Sleep Sequence')

To add test cases to the sequence, instead of to the test plan itself, simply use the sequence instead of the test plan in
the test case decorator.

@sequence.testcase('Sleep Test 1')
def sleep_test_1(test):

"""Waits five seconds"""
sleep(5)

@sequence.testcase('Sleep Test 2')
def sleep_test_2(test):

"""Waits ten seconds"""
sleep(10)

This will create the following hierarchy

Test Plan
Sleep Sequence

Sleep Test 1
Sleep Test 2

To execute it, connect the sequence to its parent, append it to the test plan.

plan.append(sequence)

Add the new sequence to your latest test bench and run it.

The stripped down log excerpt below shows the loading of the PhaseGroup defined as the Sleep Sequence, and
executes both test cases.

Entering PhaseGroup Sleep Sequence
Executing main phases for Sleep Sequence
Handling phase Sleep Test 1
Executing phase Sleep Test 1
Thread finished: <PhaseExecutorThread: (Sleep Test 1)>
Phase Sleep Test 1 finished with result PhaseResult.CONTINUE
Handling phase Sleep Test 2
Executing phase Sleep Test 2
Thread finished: <PhaseExecutorThread: (Sleep Test 2)>
Phase Sleep Test 2 finished with result PhaseResult.CONTINUE

Tutorial source

44 Chapter 6. 4. Test Bench Definition Tutorial

Spintop OpenHTF

6.4.5 Adding Levels to the Test Hierarchy

Further levels of hierarchy can be added using the sub_sequence function

sequence = TestSequence('Sleep Sequence')
sub_seq = sequence.sub_sequence('Sleep Sub Sequence 1')

Use the new sub_sequence in the test case declaration to it to the sub_sequence.

sub_seq = sequence.sub_sequence('Sleep Sub Sequence 1')
@sub_seq.testcase('Sleep Test 1A')
def sleep_test_1A(test):

"""Waits five seconds"""
sleep(5)

@sub_seq.testcase('Sleep Test 1B')
def sleep_test_1B(test):

"""Waits five seconds"""
sleep(5)

sub_seq = sequence.sub_sequence('Sleep Sub Sequence 2')
@sub_seq.testcase('Sleep Test 2')
def sleep_test_2(test):

"""Waits five seconds"""
sleep(5)

The above declarations will define the following hierarchy:

test plan
Sleep Sequence

Sleep Sub Sequence 1
Sleep Test 1A
Sleep Test 1B

Sleep Sub Sequence 2
Sleep Test 2

Add the new sub-sequences to your latest test bench and run it.

The stripped down log excerpt below shows the loading of the different PhaseGroup objects defined as the Sleep
Sequence and both Sleep Sub Sequences and the exection of all test cases.

Entering PhaseGroup Sleep Sequence
Executing main phases for Sleep Sequence
Entering PhaseGroup Sleep Sub Sequence 1
Executing main phases for Sleep Sub Sequence 1
Handling phase Sleep Test 1A
Executing phase Sleep Test 1A
Thread finished: <PhaseExecutorThread: (Sleep Test 1A)>
Phase Sleep Test 1A finished with result PhaseResult.CONTINUE
Handling phase Sleep Test 1B
Executing phase Sleep Test 1B
Thread finished: <PhaseExecutorThread: (Sleep Test 1B)>
Phase Sleep Test 1B finished with result PhaseResult.CONTINUE
Entering PhaseGroup Sleep Sub Sequence 2
Executing main phases for Sleep Sub Sequence 2
Handling phase Sleep Test 2
Executing phase Sleep Test 2

(continues on next page)

6.4. Test Flow Management 45

Spintop OpenHTF

(continued from previous page)

Thread finished: <PhaseExecutorThread: (Sleep Test 2)>
Phase Sleep Test 2 finished with result PhaseResult.CONTINUE

Further hierarchy levels can be added by creating new sub_sequences from the sub_sequence object.

sub_seq = sequence.sub_sequence('Sleep Sub Sequence 1')
sub_sub_seq = sub_seq.subsequence('Sleep Sub Sequence 1A')
@sub_sub_seq.testcase('Sleep Test 1A-1')
def sleep_test_1A_1(test):

"""Waits five seconds"""
sleep(5)

And so forth, to define the exact hierarchy needed for your test plan.

Tutorial source

6.4.6 Managing the Test Flow Based on the Trigger Phase

As we have seen previously, the trigger phase is used to input dynamic configuration parameters at the beginning of
the test bench. This test configuration can be used to manipulate the test flow. For example, a choice of test to execute
in the form of a dropdown list or a scanned entry of the product version can lead to a different execution.

The test.state object is used to communicate the information through the test bench. Let’s first define a new variable
which will allow the execution of Sleep Test 2 if the product entered in the trigger phase is “A”

def trigger(test, prompts):
"""Displays the configuration form"""
response = prompts.prompt_form(FORM_LAYOUT)
test.dut_id = response['dutid']
test.state["operator"] = response['operator']
test.state["product"] = response['product']
if test.state["product"] == "A":

test.state["run_sleep_2"] = True
else:

test.state["run_sleep_2"] = False
pprint (response)

The run_sleep_2 entry of the test.state dict will determine whether the test is executed. To add the run time test
management, redefine the test with the run_if option as seen below.

@sub_seq.testcase('Sleep Test 2', run_if=lambda state: state.get('run_sleep_2', True))
def sleep_test_3(test):

"""Waits five seconds"""
sleep(5)

This definition will lead to the test being executed if the run_sleep_2 of the test.state dictionary is set to True, that is
if the product was entered as “A”.

Modify your test bench to reflect the above changes and run it again. When prompted enter “A” as the product. Sleep
Test 2 is executed.

46 Chapter 6. 4. Test Bench Definition Tutorial

Spintop OpenHTF

Re-execute it by entering “B” as the product

Tutorial source

6.4.7 Using a Set Up and a Teardown or Cleanup Phase

It is a good practice to define a setup and a teardown phase within your sequences.

• The setup phase is used to initialize the test environment to execute the test cases in the sequence. Setup failure
cancels the execution of the group, including the teardown. Define the setup phase using the setup() function.

• The teardown phase is usually used to reset the test environment to a known status and is always executed at the
end of a sequence if at least one sequence’s test phases is executed. It is executed even if one of the phase fails
and the other intermediary phaes are not. Define the teardown phase using the teardown() function.

Adding a setup and a teardown phase to a sub-sequence

Add a setup and a teardown phase to the Sleep Sub Sequence 1

sub_seq = sequence.sub_sequence('Sleep Sub Sequence 1')

@sub_seq.setup('Sub-sequence Setup')
def sub_setup(test):

"""Says Sub setup."""

(continues on next page)

6.4. Test Flow Management 47

img/dynamic-A.png
img/dynamic-B.png

Spintop OpenHTF

(continued from previous page)

test.logger.info('Sub setup')

@sub_seq.testcase('Sleep Test 1A')
def sleep_test_1A(test):

"""Waits five seconds"""
sleep(5)

@sub_seq.testcase('Sleep Test 1B')
def sleep_test_1B(test):

"""Waits five seconds"""
sleep(5)

@sub_seq.teardown('Sub-sequence Cleanup')
def sub_cleanup(test):

"""Says Sub cleanup."""
test.logger.info('Sub cleanup')

Test Plan
Sleep Sequence

Sleep Sub Sequence 1
Sub-sequence Setup
Sleep Test 1A
Sleep Test 1B
Sub-sequence Cleanup

Sleep Sub Sequence 2
Sleep Test 2

Final teardown

A teardown phase can also be defined for the test plan itself by calling the teardown() function from the @plan
decorator. The plan teardown is used to securely shutdown the test bench (for example turning off all power sources,
disconnecting from equipement, etc) whether the test has executed completely or has catastrophically

@plan.teardown('cleanup')
def cleanup(test):

"""Says Cleaned up."""
test.logger.info('Cleaned up.')

Tutorial source

48 Chapter 6. 4. Test Bench Definition Tutorial

CHAPTER 7

5. Test Bench Documentation Tutorial

7.1 Documenting a Test Case

Documenting a test case in the code itself is very simple. The documentation can be used to generate procedures and
is used in the spintop-openhtf web interface to dispaly information to the operator.

The documentation process uses the python docstring feature. For more details consult https://www.python.org/dev/
peps/pep-0257/.

The following code snippet illustrates how to document a test case using the docstring feature.

@plan.testcase('Hello-Test')
@plan.plug(prompts=UserInput)
def hello_world(test, prompts):

"""Displays Hello Operator in operator prompt and waits for Okay"""
prompts.prompt('Hello Operator!')
test.dut_id = 'hello'

Add the docstring to the test bench implemented in the the Running a First Test Bench tutorial and run the test bench.
As can be seen in the web interface, the docstring has been added to the test phase description in the current phase
dialog and the executed phases dialog.

49

https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/

Spintop OpenHTF

The docstring is also available throughout the test plan to be printed by the developper.

Tutorial source

50 Chapter 7. 5. Test Bench Documentation Tutorial

img/test-case-doc-web-app.png

CHAPTER 8

6. Proposed Project Structure

The following project structure is proposed by the Tack Verification team for complex test bench projects. The structure
aims to seperate parameters and libraries from the test logic itself.

8.1 Test Bench Source Files Categories

We propose to split the test bench source files in the following categories.

8.1.1 Test Tools

The test tools are test function libraries that are either generic or specific to the Device under test or to the equipment
used to test it.

Separating them from the test cases themselves allow the reuse of the tools for different test benches testing the same
product or family of products, or using the same equipment It also permits their use outside of the spintop-openhtf
context.

The test tools often implement or wrap spintop-openhtf defined plugs. See About Plugs

8.1.2 Test Cases

The test cases are the functions implementing the test logic. They are loaded by the test bench and executed one after
the other.

Separating the test cases from the rest of the test bench allows the sharing of test cases between different test plans
and test benches. It is possible to create test case libraries for use in multiple test benches of the same product or the
same familiy of product. For example an Ethernet ping test can be formated for use in a lot of different products test
benches. Using test case libraries allows to reduce the duplication of code across all your test benches.

51

Spintop OpenHTF

8.1.3 Test Sequences

The test sequences are groups of test cases that are executed together. In our test bench design practices test sequences
are specific to the test bench, and test cases are generic, possibly reused by multiple test benches.

8.1.4 Test Criteria

The thresholds against which measures are compared to declare a test case PASS or FAIL. In the spintop-openhtf
context, the measures module implements the criteria and the comparison against the selected values.

Test criteria can be changed without modifying the test logic of the test bench. Seperating them allows to better track
the modfications of one or the other. Also, criteria can be shared between test cases (example a maximum temperature
at all steps of the test). Hardcoding them in test cases is therefore not a good practice.

8.1.5 Test Station Configuration

The parameters configuring the test station itself, that is parameters changing from station to station and test jig to test
jig, such as ip adresses, com port, etc.

Since multiple test benches can use the same station, and the same ip adresses, com port, etc., the test station configu-
ration should also be shared between the different test benches. When a modification is made on the test station, such
as changing the test PC IP address, the changes should be inherited by all test benches through a single update to the
test station configuration file.

8.1.6 Static configuration

The static configuration are the parameters statically configuring the execution of the test plan. They are used to
modify the flow of the test without changing the test cases or test tools code itself. The following examples illustrate
test parameters that should be defined in the static configuration.

• For a test where there is number of retries permitted for a test step, define the maximum retries number in the
static configuration.

• For a test that spans frequencies, define the number of iterations and the tested frequencies in the static configu-
ration.

Separating the static configuration from the test cases allows for the reduction of hardcoded parameters deep in the
code, especially if the hardcoded constant is used in several plases. It permits the modification of the parameters in a
central configuration file.

8.1.7 Product Definition

Some test benches are built for families of products which vary slightly from version to version. The product definition
is the static configuration which defines the product’s parameters.

Separating the product definition from the test sources makes sure that the version particularities are not hardcoded in
the test logic. This permits the easier addition of new prooduct versions in the future.

Typically one configuration file is specified per product version. This configuration file is imported once the product
versions has been determined in the trigger phase.

52 Chapter 8. 6. Proposed Project Structure

Spintop OpenHTF

8.2 Proposed Single-Repository Structure

Let’s explore the single-repository test bench structure as proposed by the Tack Verification team. This proposed
stucture is meant to guide the test bench developpers in the layout of thier sources, not to restrict them in any way. We
propose to use it when the aim is to implement a single test bench for a single product.

As implied, the file structure is implementented in a single Git repository. A folder is created for each of the source
categories explained above.

repository
main.py: Calls and runs the test bench.

criteria: The criteria folder holds the global criteria for the test bench.
Sequence specific criteria can be defined at the sequence level.

global_criteria.py

products: Each python file defines a different product through its static
→˓parameters.

product_A.py
product_B.py
product_C.py

station_config: Each .yml file defines a different test station.
station_1.py
station_2.py

static_config: The static config folder holds the product-independent static
→˓configuration for

the test bench as a whole. Each sequence uses its own static
→˓configuration as well.

static_config.py

test_cases: The functions that implement the test cases are defined in test case
→˓libraries.

lib_A
cases_A1.py
cases_A2.py

lib_B
lib_C

test_sequences: The sequences are separated in folders which hold the sequence
→˓and test cases

declarations, the static configuration and the criterion specific
→˓to the sequence.

sequence_A
sequence_A.py
A_static_config.py
A_criteria.py

sequence_B
sequence_B.py
B_static_config.py

| B_criteria.py

test_tools: The test tools that are used to implement the test cases are defined
→˓in tool libraries.

(continues on next page)

8.2. Proposed Single-Repository Structure 53

Spintop OpenHTF

(continued from previous page)

lib_A
tools_A1.py
tools_A2.py

lib_B
lib_C

8.3 Proposed Multiple-Repository Structure

Let’s explore the multiple-repository structure proposed by the Tack Verification team. Once again, the proposed
structure is meant to guide, not to restrict. We propose to use it when multiple test benches are developped for a
product family with multiple different versions.

The following example illustrates a set of test benches implementing the tests of a family of products. Product A and
B are tested by the same set of 3 test benches which are run one after the other. Product C which is in the same product
family as products A and B, is tested by a dedicated testb bench. It will however use the same test stations and test
case libraries as the other products.

8.3.1 Test Bench Repository

At the top level of the repository architecture are the test bench repositories. The test case and tool libraries have been
removed from the repository, as well as the test station configuration and product.

Each repository implements a specific test for a product or set of products.

54 Chapter 8. 6. Proposed Project Structure

img/MultiRepo.png

Spintop OpenHTF

repository
main.py: Calls and runs the test bench.

criteria: The criteria folder holds the global criteria for the test bench.
Sequence specific criteria can be defined at the sequence level.

global_criteria.py

static_config: The static config folder holds the product-independent static
→˓configuration for

the test bench as a whole. Each sequence uses its own static
→˓configuration as well.

static_config.py

test_sequences: The sequences are separated in folders which hold the sequence
→˓and test cases

declarations, the static configuration and the criterion specific
→˓to the sequence.

sequence_A
sequence_A.py
A_static_config.py
A_criteria.py

sequence_B
sequence_B.py
B_static_config.py
B_criteria.py

8.3.2 Test Station Configuration Repository

The test station configuration files are defined in a separate repository because any of the 4 test benches from our
example can use any of the test stations. It prevents the duplication of information and allows the test bench maintainer
to modify a single file when a station is modified instead of having to correct the file in each test bench repository.

repository
main.py: Calls and runs the test bench.

station_config: Each .yml file defines a different test station.
station_1.py
station_2.py

8.3.3 Product Definition Repository

The production definition configuration files are defined in a separate repository because any of the 4 test benches
from our example can test one product or the other. It prevents the duplication of information and allows the test bench
developper to modify a product definition in a single file which will impact all test benches.

repository
main.py: Calls and runs the test bench.

products: Each python file defines a different product through its static
→˓parameters.

product_A.py
product_B.py
product_C.py

8.3. Proposed Multiple-Repository Structure 55

Spintop OpenHTF

8.3.4 Test Cases Library Repository

The test case libraries are imported by the test benches to be called by their sequences. Their implementation is made
independent from the spintop-openhtf context, meaning that the definition of the test cases as spintop-openhtf phases
is made in the sequences of the test bench repository. This allows the test case implementations in this repository to
be used outside of a spintop-openhtf test bench, for example as a standalone debugging python executable.

repository
main.py: The main in the test case repository is used to test or use the test

→˓cases
outside of a spintop-openhtf test bench.

test_cases: The functions that implement the test cases are defined in test case
→˓libraries.

lib_A
cases_A1.py
cases_A2.py

lib_B
lib_C

The following is an example of the definition of a test case in a library and how the a test sequence from the test bench
repository calls it.

From the test bench repository
import test_case_lib
sequence = TestSequence('Sleep Sequence')
@sequence.testcase('Test #1 - Sleep Test') # Defines test #1 of the test bench.

(continues on next page)

56 Chapter 8. 6. Proposed Project Structure

img/MultiRepo.png

Spintop OpenHTF

(continued from previous page)

def Test1_Sleep(test):
"""Waits five seconds"""
test_case_lib.sleep_test(sleep_time=5)

From a test case library

def sleep_test(sleep_time=5)
sleep(sleep_time)

As can be seen, the spintop-openhtf test case is defined in the test bench repository. This allows its definition as test
case #1 and its documentation to make sense in the test bench context. Defining the spintop-openhtf test case in the
test case library would mean that the test would have to be test #1 of every test bench that used it.

8.3.5 Test Tools Library Repository

The test tools libraries implement functions that control and monitor the product of the equipment around it. They can
be implemented as plugs and can wrap plugs from the spintop-openhtf tool libraries. They can be imported and used
by the test case libraries or directly by the test bench repository. The test tools are meant to be usable outside of a
spintop-openhtf test bench.

repository
main.py: The main in the tools repository is used to test or use the tools

outside of a spintop-openhtf test bench.

test_tools: The test tools that are used to implement the test cases are defined
→˓in tool libraries.

lib_A
tools_A1.py
tools_A2.py

lib_B
lib_C

8.3.6 Unit-testing and Debugging

The proposed structure facilitates the use of unit tests to verify test cases and test tools before a version is ready to be
used in a test bench. It also helps the implementation of complete debugging tools using both libraries and bypasssing
the test bench entirely.

The following image showcases the different entry points of the test case and test tool library usage.

8.3. Proposed Multiple-Repository Structure 57

Spintop OpenHTF

Each library is callable from

• the test bench itself

• the debugging tools to help debug failing units

• the unit test implementation

• the repository main which is used for development and debugging of the llbrary itself

8.3.7 Notes on Multiple-Repository Structure

Import

We do not specify here the methods of linking the different repositories. This could be done by defining git submod-
ules, or by serving a pypi server hosting the repositories. It is outside the scope of spintop-openhtf and is up to the
developer.

58 Chapter 8. 6. Proposed Project Structure

img/entrypoints.png

Spintop OpenHTF

Versioning

Versioning is of great importance in the case of a multiple-repository structure. Since the test bench can remain the
same but its underlying libraries and tools can change, it is imperative that the repositories under the test bench be
versioned and that only the required and tested version of these repositories be installed in a deployment or an update.

Unit tests

For the test case and test tool libraries, we believe it is a good practice to create a unit test structure to validate new
commits of these repositories and create a new version importable by the test benches.

8.3. Proposed Multiple-Repository Structure 59

Spintop OpenHTF

60 Chapter 8. 6. Proposed Project Structure

CHAPTER 9

7. Test Bench Configuration Tutorial

9.1 Static configuration

The static configuration are the parameters statically configuring the execution of the test plan. They are used to
modify the flow of the test without changing the test cases or test tools code itself. The following examples illustrate
test parameters that should be defined in the static configuration.

9.1.1 Definition

In the context of a test bench implementation on spintop-openhtf, the static configuration is defined as classes of
parameters accessible across the test bench sources.

Create a new file called static.py in the same folder as your test bench main. In the file, let’s define a class building the
parameters of the sleep test. Add the following code to the file:

class SleepConfig():
SLEEP_TIME = 5
SLEEP_ITERATIONS = 2

9.1.2 Use of parameters

To access the configuration in the test bench code, simply import the class.

from static import SleepConfig

and access directly the instanciated parameters.

@plan.testcase('Sleep')
def sleep_test(test):

"""Waits five seconds"""

(continues on next page)

61

Spintop OpenHTF

(continued from previous page)

for x in range(SleepConfig.SLEEP_ITERATIONS):
print ("Sleep iteration {} - sleep time {}".format(x,

SleepConfig.SLEEP_TIME))
sleep(SleepConfig.SLEEP_TIME)

Add the use of the static configuration use to your latest test bench and run it.

The test will execute a 5 second sleep twice as determined

Sleep iteration 0 - sleep time 5
Sleep iteration 1 - sleep time 5

9.1.3 Use in Complex Test Benches

Multiple classes can be defined in the same configuration file. The pattern used for the definition is up to the developper.
Each test case can have its own class of parameters, or they can be split according to product features across multiple
test cases.

The static configuration as proposed is very useful in the definition of complex test benches, for example one man-
aging the tests of different versions of the same products. In this case, the difference between the products can be
parametrized using two classes with the same variables at different values.

class ProductVersionA():
TRX_CNT = 2
TEMP_SENSOR_I2C_ADDR = 0x49

class ProductVersionB():
TRX_CNT = 1
TEMP_SENSOR_I2C_ADDR = 0x48

Add the product version selection in the trigger phase and import dynamically the right class depending on the selected
product. As illustrated below, using the custom trigger phase from the Custom Trigger Phase tutorial.

if test.state["product"] == "A":
from static import ProductVersionA as ProductConfig

elif test.state["product"] == "B":
from static import ProductVersionB as ProductConfig

print ("I2C Address: {}".format(ProductConfig.TEMP_SENSOR_I2C_ADDR))

Add the above code to the sleep test case and run it again. Enter “A” for the product when prompted and the right
configuration for product A will be imported.

I2C Address: 0x49

Tutorial source

Configuration file

9.2 Test Station Configuration

The test station configuration is the list of all parameters configuring the test station itself, that is parameters changing
from station to station and test jig to test jig, such as ip adresses, com port, etc.

62 Chapter 9. 7. Test Bench Configuration Tutorial

Spintop OpenHTF

9.2.1 Definition

In the context of a test bench implementation on spintop-openhtf, the test station configuration is defined as a yaml
file. As an example, the following yaml snippet defines the configuration of the serial port and ip address of a test
bench.

serial :
comport: "COM4"
baudrate : "115200"

ip_address : "192.168.0.100"
test_constant: 4

Create a new .yml file, paste the above configurations in it and save it as config.yml in the same directory as your test
bench main.py It will be imported in a test bench.

9.2.2 Load Configuration from File

To load the configurations in the test logic, the openhth conf module must be imported.

from openhtf.util import conf

The configuration parameters used must then be defined. A description of the configuration can be added to the
declaration.

conf.declare("serial", 'A dict that contains two keys, "comport" and "baudrate"')
conf.declare("ip_address", 'The IP Address of the testbench')
conf.declare("test_constant", 'A test constant')

and the configuration file loaded.

conf.load_from_filename("config.yml")

9.2.3 Use Configuration

Once loaded and declared, the test station parameters can be accessed through the conf object. For example, to print
soome of the configuration parameters, use the following in a test case:

print ("Serial port is {}".format(conf.serial["comport"]))
print ("IP address is {}".format(conf.ip_address))
print ("Test constant is {}".format(conf.test_constant))

Add the above code excerpts to your latest test bench and run it.

The test will print the information in the console window as

Serial port is COM4
IP address is 192.168.0.100
Test constant is 4

9.2.4 Built-in station id parameter

Spintop-openhtf uses a built-in parameter in the conf object that defines the test station id. The id used is the hostname
of the PC on which the test bench runs. For example, printing the station ID of a PC whose hostname is “TutorialSta-
tion”

9.2. Test Station Configuration 63

Spintop OpenHTF

print ("Station ID is {}".format(conf.station_id))

will result in

Station ID is TutorialStation

Tutorial source

Configuration file

64 Chapter 9. 7. Test Bench Configuration Tutorial

CHAPTER 10

8. Plugs Tutorial

10.1 About Plugs

Plugs are an OpenHTF concept. The OpenHTF team defines them as follow:

The essence of an OpenHTF test is to interact with a DUT to exercise it in various ways and observe the
result. Sometimes this is done by communicating directly with the DUT, and other times it’s done by
communicating with a piece of test equipment to which the DUT is attached in some way. A plug is a
piece of code written to enable OpenHTF to interact with a particular type of hardware, whether that be a
DUT itself or a piece of test equipment.

Technically, plugs are a Python class that is instanciated once per test and shared between test phases. They have a
strong sense of cleanup that allows them to execute specific teardown actions regardless of the test outcome.

Although OpenHTF references hardware directly, plugs are also used in various roles that are non-related to hardware,
such as user input. Overall, a better explanation would be that they are used for resources that are shared by test cases:

• Plugs for test equipments

• Plugs for DUT interfacing, which can be subdivised in some cases:

– COM Interface

– SSH Interface

– Etc.

• Plugs for user input

• Plugs for custom frontend interaction

• Plugs for sharing test context, such as calibration performed over multiple test cases

65

Spintop OpenHTF

10.2 Using Plugs

Using plugs in spintop-openhtf is pretty straightforward. Let’s take the UserInput plug as example since it is used in
pretty much all tests.

1. First, the plug must be imported.

from openhtf.plugs.user_input import UserInput

2. Then, on testcases that require this plug, the plug decorator must be used.

from openhtf.plugs.user_input import UserInput
from spintop_openhtf import TestPlan

plan = TestPlan('mytest')

@plan.testcase('TEST1')
@plan.plug(prompt=UserInput) # 'prompt' is user-defined
def test_1(test, prompt): # prompt will contain an instance of UserInput

The class of the plug is used as argument to the plug decorator. This is important. The executor will instantiate an
instance of the class and use the same object across a test run. On each new test, the plug will be re-instantiated.

Warning: You choose the name you want to give to the argument. The name must have a match in the function
definition. For example, the following would FAIL:

Will complain that 'prompt' is not an argument
@plan.testcase('TEST1')
@plan.plug(prompt=UserInput)
def test_1(test, user_input): # WRONG. No user_input argument exists

10.3 Creating Plugs

Creating plugs is the basis of reusing interface functionnalities. As an example, we will create a plug that copies a file
from a source folder to a destination.

10.3.1 Base Structure

Every plug must inherit from BasePlug. Moreover, the __init__ method must take no arguments. The following
excerpt illustrates the plug definition

import shutil

from openhtf.plugs import BasePlug

class FileCopier(BasePlug):
def copy_file(self, source_file, destination_folder):

shutil.copy(source_file, destination_folder)

The following excerpt instanciates the plug in a test case.

66 Chapter 10. 8. Plugs Tutorial

Spintop OpenHTF

@plan.testcase('File Copy Test')
@plan.plug(copy_plug=FileCopier)
def file_copy_test(test, copy_plug):

copy_plug.copy_file(source, destination)

Tutorial source

10.4 Wrapping spintop-openhtf Plugs

A typical manner of creating custom plugs for a test bench is to wrap an existing, spintop-openhtf plug, to add
applicative functionalities to it.

For example, a linux shell plug specific to a product can be created by wrapping the spintop-openhtf comport plug.
The plug adds typical linux features to the comport plug such as login, file read, file copy, etc.

The plug is created

from spintop_openhtf.plugs.iointerface.comport import ComportInterface

class LinuxPlug(ComportInterface):

def __init__(self, comport, baudrate=115200):
super().__init__(comport, baudrate)

def login(self, username):
return self.com_target("{}".format(username), '{}@'.format(username),

→˓timeout=10, keeplines=0)

def file_read(self, file):
return self.com_target("cat {}".format(file), '@', timeout=10, keeplines=0)

def file_copy(self, source, destination):
return self.com_target("cp {} {}".format(source, destination), '@',

→˓timeout=10, keeplines=0)

and imported in a test case

linux_plug = LinuxPlug.as_plug('linux_plug', comport='COM5', baudrate=115200)

@plan.testcase('Linux_Test')
@plan.plug(linux=linux_plug)
def LinuxTest(test, linux):

try:
linux.open_with_log()
test.logger.info ("COM Port open")
print(linux.file_read('file.txt'))
linux.file_copy('file.txt',destination)

except:
test.logger.info ("COM Port open failed")
return PhaseResult.STOP

10.4. Wrapping spintop-openhtf Plugs 67

Spintop OpenHTF

68 Chapter 10. 8. Plugs Tutorial

CHAPTER 11

9. Test Criteria Tutorial

11.1 Defining Test Criteria

The criteria refer to the thresholds against which measures are compared to declare a test case PASS or FAIL. In the
spintop-openhtf context, the measures module implements the criteria and the comparison against the selected values.

To define a test criterion, first define an openhtf measurement object.

import openhtf as htf
criterion = htf.Measurement('test_criterion').in_range(18, 22)

Here the criterion defined will return a PASS if the value evaluated is between 18 and 22. The criterion name is
“test_criterion” and it has been stored in the criterion variable.

Use the htf.measures decorator to use the defined criterion in a test case.

@plan.testcase('Criteria test')
@htf.measures(criterion)
def criteria_test(test):

value = 20
test.measurements.test_criterion = value

The criterion object is loaded in the openhtf measures. To evaluate a value against the test criterion, simply equate the
value to the criterion. Note that the criterion name (“test_criterion”) is used and not the object variable.

Add the defined criteria and test case to your latest test bench and run it. You will see that the new test phase called
Criteria test has passed.

69

Spintop OpenHTF

Hit expand all on the Phases box and see that the evaluated criteria has been added to the test phase result.

Modify the value in the test case code to use a value outside of the criteria range.

@plan.testcase('Criteria test')
@htf.measures(criterion)
def criteria_test(test):

value = *12*
test.measurements.test_criterion = value

Run the test bench again. The phase will now fail.

Tutorial source

11.2 Criteria types

In the example above, a range was defined to instanciate the criteria. Multiple different validator types can be used
instead of the range function.

70 Chapter 11. 9. Test Criteria Tutorial

img/criteria-pass.png
img/criteria-pass-expanded.png
img/criteria-fail-expanded.png

Spintop OpenHTF

A good practice is to use a validator function which will return True or False depending on the value evaluated. For
example, our range criteria can be defined in another manner as

def range_validator(value):
return 18 =< value =< 22

criterion = htf.Measurement('test_criterion').with_validator(range_validator)

Using the with_validator function helps you create complex criteria that match your exact needs.

For more details on the different types of criteria that can be implemented please refer the the Measurements reference

11.3 Documentation

It is possible to add documentation to the criterion with the doc() function

criterion = htf.Measurement('test_criterion').in_range(18, 22)
.doc('This measurement helps illustrate the criteria usage in

→˓spintop-openhtf')

11.4 Using a criteria definition file

As we have seen in the 6. Proposed Project Structure tutorial , we believe it is a good practice to seperate the criteria
definition from the actual test logic of the test bench. This guideline is proposed because it allows the modification
and the tracking of all criteria in a single emplacement. It also eliminates the duplication of criteria.

To this purpose, we propose to create a file called, for example, criteria.py. In this file a function called get_criteria()
takes the criterion name as argument and returns the criterion which the @htf.measures decorator uses.

Create the file and implement the function as described below.

import openhtf as htf

def get_criteria(criterion):
criteria_dict = {

"test_criterion": htf.Measurement('test_criterion').in_range(18,22)
}

return criteria_dict[criterion]

The python dictionary acts as a criteria switch case. The function selects the required measurement object and returns
it to the caller.

In your test bench, use the function in the @htf.measures decorator to load the criteria and use it directly.

from criteria import get_criteria

@plan.testcase('Criteria test')
@htf.measures(get_criteria('test_criterion'))
def criteria_test(test):

value = 20
test.measurements.test_criterion = value

Run the test bench again and the result should be the same as was obtained above.

11.3. Documentation 71

Spintop OpenHTF

Tutorial source

Criteria file

11.5 Dynamic Test Criteria

Test criteria can be defined dynamically in the test logic. Two major reasons do so are:

• To create criteria based on the product definition configuration

• To create criteria based on previous results or measurements

11.5.1 Defining a Dynamic Test Criterion

To define a dynamic criterion, use the htf.Measurement function as in the static definitions, but instead as defining it
as a function decorator, create a new entry in the state.running_phase_state.measurements dictionary. Also, the test
case must have access to the state object. To do so,

• Add the requires_state=True attribute to the testcase defintion decorater

• Instead of passing the test variable to the test case function, the state variable must be passed.

• For the evaluation of the test criterion, the measurements dictionary must be accessed from the state object
instead of the test objects (state.test_api.measurements)

@plan.testcase('Dynamic Criterion Test', requires_state=True)
def criteria_test(state):

value = 12
state.running_phase_state.measurements['VOLTAGE'] = htf.Measurement('VOLTAGE').

in_range(11.5,12.5)
state.test_api.measurements.VOLTAGE = value

11.5.2 Based on a product defintion

A good example of a criterion based on a product definition is a criterion defined around the input voltage of a device.
For example, the product defintion states that the input voltage is 12V. A criterion defined around the voltage would
state that a measure of 12V +/- 0.5 Volts would indicate a PASS.

First create a file name product.py, and implement the voltage definition within it.

class voltage():
input_voltage = 12

Then define the dynamic criterion importing the value from the product definition.

from product import voltage

@plan.testcase('Dynamic Criterion Test from Product Definition', requires_state=True)
def product_definition_test(state):

#value = measure_input_voltage()
value = 12

#definition of criterion
state.running_phase_state.measurements['VOLTAGE'] = htf.Measurement('VOLTAGE').

(continues on next page)

72 Chapter 11. 9. Test Criteria Tutorial

Spintop OpenHTF

(continued from previous page)

in_range(voltage.input_voltage - 0.5, voltage.input_voltage + 0.5)

#evaluation of criterion
state.test_api.measurements.VOLTAGE = value

11.5.3 Based on a previous measurement

The same method can be used to define a criterion from a previous measurement. For example, testing a voltage
divider, which has been set to produce a voltage 30% of the input voltage. The input voltage has been measured as
12.05 volts. To create the divided voltage criterion, the measured value must be used in its definition, not the nominal
value.

@plan.testcase('Dynamic Criterion Test from Previous Measurement', requires_
→˓state=True)
def previous_measurement_test(state):

#measured_input = measure_input_voltage()
measured_input = 12.05

#divider_voltage = measure_divider_voltage()
divider_voltage = 3.55

#definition of criterion as within +/- 5% of the divider voltage, which is 30% on
→˓the measured input

state.running_phase_state.measurements['DIVIDER_VOLTAGE'] = htf.Measurement(
→˓'DIVIDER_VOLTAGE').

in_range(measured_input * 0.3 * 0.95, measured_input * 0.3 * 1.05)

#evaluation of criterion
state.test_api.measurements.DIVIDER_VOLTAGE = divider_voltage

Tutorial source

Product Definition file

11.5. Dynamic Test Criteria 73

Spintop OpenHTF

74 Chapter 11. 9. Test Criteria Tutorial

CHAPTER 12

10. Test Results Tutorial

12.1 Exploring the Test Results

12.1.1 Test Result Folder

Each execution of the test bench creates a test record is stored on the test station computer. This test
record is saved in the %localappdata%\tackv\spintop-openhtf\openhtf-history\test-bench-name\ folder. For example,
C:\\Users\tack.user\AppData\Local\tackv\spintop-openhtf\openhtf-history\hello for our hello test bench.

For each test record a folder is created with its name formatted as dut-id_execution-date-and-time_result. For example,
SN01_2020_04_12_213700_409000_PASS is a test for the SN01 unit executed on April 12th which resulted in a
global PASS. In the folder are all the results gathered during the test.

12.1.2 Test Result JSON file

The main result file is the **result.json** file. It holds the result of the test, of all phases, as well as all the logs and
the complete measurements with their evaluated criteria.

Global results

At the top of the file are the global test results, namely:

• the Device Under Test ID

• the start and end time in Unix epoch time

• the global outcome of the test bench

• the station ID

"dut_id": "SN01",
"start_time_millis": 1586727420409,
"end_time_millis": 1586727435444,
"outcome": "PASS",

(continues on next page)

75

Spintop OpenHTF

(continued from previous page)

"outcome_details": [],
"station_id": "P089",

Metadata

The metadata section of the results follow. The test name as well as the used test station configuration is logged there.

"metadata": {
"test_name": "Sleep",
"config": {

"plug_teardown_timeout_s": 0,
"allow_unset_measurements": false,
"station_id": "Tutorial Station",
"cancel_timeout_s": 2,
"stop_on_first_failure": false,
"capture_source": false,
"capture_docstring": true,
"teardown_timeout_s": 30,
"user_input_enable_console": false,
"frontend_throttle_s": 0.15,
"station_server_port": "4444"

}
},

Phases Results

The phase results follow where the file logs them as an array

"phases": [
...

],

For each phase is logged,

• the start and end time in Unix epoch time

• the phase name (name)

• the phase result (result.phase_result)

• the phase outcome (outcome)

{
"measurements": {},
"options": {

"name": "Sleep Test 1A",
"run_under_pdb": false

},
"start_time_millis": 1586727420410,
"end_time_millis": 1586727425412,
"attachments": {},
"result": {

"phase_result": "CONTINUE"
},
"outcome": "PASS",
"descriptor_id": 2136562880584,
"name": "Sleep Test 1A",
"codeinfo": {

"name": "sleep_test_1",
(continues on next page)

76 Chapter 12. 10. Test Results Tutorial

Spintop OpenHTF

(continued from previous page)

"docstring": "Waits five seconds",
"sourcecode": ""

}
},

The measurements and criteria details are also added with their parameters in case there was one defined for the phase.

• name (measurements.criterionname.name)

• outcome (measurements.criterionname.outcome)

• evaluated value (measurements.criterionname.measured_value)

• validators (measurements.criterionname.validators)

{
{

"measurements": {
"test_criterion": {

"name": "test_criterion",
"outcome": "PASS",
"validators": [

"18 <= x <= 22"
],
"docstring": "This measurement helps illustrate the criteria usage

→˓in spintop-openhtf",
"measured_value": 20

}
},
"options": {

"name": "Criteria test",
"run_under_pdb": false

},
"start_time_millis": 1586635840894,
"end_time_millis": 1586635840894,
"attachments": {},
"result": {

"phase_result": "CONTINUE"
},
"outcome": "PASS",
"descriptor_id": 2150767337288,
"name": "Criteria test",
"codeinfo": {

"name": "criteria_test",
"docstring": null,
"sourcecode": ""

}
}

Logs

Each log entry is kept in the test record. For each log entry are recorded

• the logger name

• the logging level (info, warning, error, etc)

• the source (source code file and line)

• the timestamp

12.1. Exploring the Test Results 77

Spintop OpenHTF

• the logged message

"log_records": [
{

"level": 10,
"logger_name": "openhtf.core.phase_executor",
"source": "phase_executor.py",
"lineno": 249,
"timestamp_millis": 1586727409681,
"message": "Executing phase Configuration"

},
{

"level": 10,
"logger_name": "openhtf.plugs.user_input",
"source": "user_input.py",
"lineno": 369,
"timestamp_millis": 1586727409683,
"message": "Displaying prompt (97f2a2ebc7c2491f8b3712efed20f34c): \"{'schema

→˓': {'title': 'Test configuration', 'type': 'object', 'required': ['operator, uutid,
→˓product'], 'properties': {'operator': {'type': 'string', 'title': 'Enter the
→˓operator name'}, 'dutid': {'type': 'string', 'title': 'Enter the device under test
→˓serial number'}, 'product': {'type': 'string', 'title': 'Enter the product name'}}},
→˓ 'layout': ['operator', 'dutid', 'product']}\""

},

12.2 Appending Data to Test Record

In the case your test bench generates a file during its execution, it is possible to add it to the test record. To do so use
the test.attach or test.attach_from_file() functions.

Using the test.attach() function as below will create a file name **test_attachment** which holds This is test attach-
ment data. as text data in the test record folder.

test.attach('test_attachment', 'This is test attachment data.'.encode('utf-8'))

Using the test.attach_from_file() function as below will take a previously generated data file named **exam-
ple_attachment.txt** and move it to the test record folder.

test.attach_from_file(os.path.join(os.path.dirname(__file__), 'example_attachment.txt
→˓'))

Create the **example_attachment.txt** file in the folder holding your test bench main, and add both lines to one of
your test cases. Run the test bench and verify that the new test run has saved the test data correctly.

12.2.1 Loading Data from a Test Record File

Once a file has been saved in the test record, it becomes accessible from the source code. The
test.get_attachment() function allows the loading of a test record file. Add the following to your test case to
load the file created above by the **test.attach** function.

test_attachment = test.get_attachment('test_attachment')
print(test_attachment)

You should see that the content of the **test_attachment** file has been printed in the console, that is ‘This is test
attachment data.’.

78 Chapter 12. 10. Test Results Tutorial

Spintop OpenHTF

Tutorial source

Attachment file

12.2. Appending Data to Test Record 79

Spintop OpenHTF

80 Chapter 12. 10. Test Results Tutorial

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

81

Spintop OpenHTF

82 Chapter 13. Indices and tables

Python Module Index

o
openhtf.util.conf, 9

83

Spintop OpenHTF

84 Python Module Index

Index

A
add_callbacks() (spintop_openhtf.TestPlan

method), 6
allow_unset_measurements (spin-

top_openhtf.testplan._default_conf.ConfigHelpText
attribute), 9

append() (spintop_openhtf.TestSequence method), 7
as_plug() (spintop_openhtf.plugs.base.UnboundPlug

class method), 11
as_plug() (spintop_openhtf.plugs.comport.ComportInterface

class method), 11
as_plug() (spintop_openhtf.plugs.ssh.SSHInterface

class method), 14

C
cancel_timeout_s (spin-

top_openhtf.testplan._default_conf.ConfigHelpText
attribute), 10

capture_docstring (spin-
top_openhtf.testplan._default_conf.ConfigHelpText
attribute), 10

capture_source (spin-
top_openhtf.testplan._default_conf.ConfigHelpText
attribute), 10

clear_lines() (spin-
top_openhtf.plugs.comport.ComportInterface
method), 12

close() (spintop_openhtf.plugs.base.UnboundPlug
method), 11

close() (spintop_openhtf.plugs.comport.ComportInterface
method), 12

close() (spintop_openhtf.plugs.ssh.SSHInterface
method), 14

close_log() (spintop_openhtf.plugs.base.UnboundPlug
method), 11

close_log() (spintop_openhtf.plugs.comport.ComportInterface
method), 12

close_log() (spintop_openhtf.plugs.ssh.SSHInterface
method), 14

com_target() (spin-
top_openhtf.plugs.comport.ComportInterface
method), 12

ComportInterface (class in spin-
top_openhtf.plugs.comport), 11

ConfigHelpText (class in spin-
top_openhtf.testplan._default_conf), 9

ConfigurationInvalidError, 9
connection_lost() (spin-

top_openhtf.plugs.comport.ComportInterface
method), 12

connection_made() (spin-
top_openhtf.plugs.comport.ComportInterface
method), 12

D
data_received() (spin-

top_openhtf.plugs.comport.ComportInterface
method), 12

Declaration (class in openhtf.util.conf), 9

E
eof_received() (spin-

top_openhtf.plugs.comport.ComportInterface
method), 12

err_output (spintop_openhtf.plugs.ssh.SSHInterface.SSHResponse
attribute), 13

execute() (spintop_openhtf.TestPlan method), 6
execute_command() (spin-

top_openhtf.plugs.comport.ComportInterface
method), 12

execute_command() (spin-
top_openhtf.plugs.ssh.SSHInterface method),
14

execute_test (spintop_openhtf.TestPlan attribute), 6
exit_code (spintop_openhtf.plugs.ssh.SSHInterface.SSHResponse

attribute), 13

F
frontend_throttle_s (spin-

85

Spintop OpenHTF

top_openhtf.testplan._default_conf.ConfigHelpText
attribute), 10

H
history_path (spintop_openhtf.TestPlan attribute), 6

I
image_url() (spintop_openhtf.TestPlan method), 6
InvalidKeyError, 9
is_runnable (spintop_openhtf.TestPlan attribute), 6

K
keep_lines() (spin-

top_openhtf.plugs.comport.ComportInterface
method), 12

KeyAlreadyDeclaredError, 9

L
log_to_filename() (spin-

top_openhtf.plugs.base.UnboundPlug method),
11

log_to_filename() (spin-
top_openhtf.plugs.comport.ComportInterface
method), 12

log_to_filename() (spin-
top_openhtf.plugs.ssh.SSHInterface method),
14

log_to_stream() (spin-
top_openhtf.plugs.base.UnboundPlug method),
11

log_to_stream() (spin-
top_openhtf.plugs.comport.ComportInterface
method), 12

log_to_stream() (spin-
top_openhtf.plugs.ssh.SSHInterface method),
14

logger (spintop_openhtf.plugs.base.UnboundPlug at-
tribute), 11

M
measures() (spintop_openhtf.TestSequence method),

7
message_target() (spin-

top_openhtf.plugs.comport.ComportInterface
method), 13

N
name (spintop_openhtf.TestSequence attribute), 8
next_line() (spintop_openhtf.plugs.comport.ComportInterface

method), 13
no_trigger() (spintop_openhtf.TestPlan method), 6

O
open() (spintop_openhtf.plugs.base.UnboundPlug

method), 11
open() (spintop_openhtf.plugs.comport.ComportInterface

method), 13
open() (spintop_openhtf.plugs.ssh.SSHInterface

method), 15
openhtf.util.conf (module), 9
output (spintop_openhtf.plugs.ssh.SSHInterface.SSHResponse

attribute), 14

P
pause_writing() (spin-

top_openhtf.plugs.comport.ComportInterface
method), 13

plug() (spintop_openhtf.TestSequence method), 8
plug_teardown_timeout_s (spin-

top_openhtf.testplan._default_conf.ConfigHelpText
attribute), 9

R
repeat_limit (spintop_openhtf.TestSequence at-

tribute), 8
requires_state (spintop_openhtf.TestSequence at-

tribute), 8
resume_writing() (spin-

top_openhtf.plugs.comport.ComportInterface
method), 13

run() (spintop_openhtf.TestPlan method), 6
run_if (spintop_openhtf.TestSequence attribute), 8
run_once() (spintop_openhtf.TestPlan method), 7
run_under_pdb (spintop_openhtf.TestSequence at-

tribute), 9

S
setup() (spintop_openhtf.TestSequence method), 8
SSHInterface (class in spintop_openhtf.plugs.ssh),

13
SSHInterface.SSHResponse (class in spin-

top_openhtf.plugs.ssh), 13
station_discovery_address (spin-

top_openhtf.testplan._default_conf.ConfigHelpText
attribute), 10

station_discovery_port (spin-
top_openhtf.testplan._default_conf.ConfigHelpText
attribute), 10

station_discovery_ttl (spin-
top_openhtf.testplan._default_conf.ConfigHelpText
attribute), 10

station_id (spintop_openhtf.testplan._default_conf.ConfigHelpText
attribute), 9

station_server_port (spin-
top_openhtf.testplan._default_conf.ConfigHelpText
attribute), 10

86 Index

Spintop OpenHTF

std_output (spintop_openhtf.plugs.ssh.SSHInterface.SSHResponse
attribute), 14

stop_on_first_failure (spin-
top_openhtf.testplan._default_conf.ConfigHelpText
attribute), 10

sub_sequence() (spintop_openhtf.TestSequence
method), 8

T
tearDown() (spintop_openhtf.plugs.base.UnboundPlug

method), 11
tearDown() (spintop_openhtf.plugs.comport.ComportInterface

method), 13
tearDown() (spintop_openhtf.plugs.ssh.SSHInterface

method), 15
teardown() (spintop_openhtf.TestSequence method),

8
teardown_timeout_s (spin-

top_openhtf.testplan._default_conf.ConfigHelpText
attribute), 10

testcase() (spintop_openhtf.TestSequence method),
8

TestPlan (class in spintop_openhtf), 5
TestSequence (class in spintop_openhtf), 7
timeout_s (spintop_openhtf.TestSequence attribute), 8
trigger() (spintop_openhtf.TestPlan method), 7
trigger_phase (spintop_openhtf.TestPlan attribute),

7

U
UnboundPlug (class in spintop_openhtf.plugs.base),

11
UndeclaredKeyError, 9
UnsetKeyError, 9
user_input_enable_console (spin-

top_openhtf.testplan._default_conf.ConfigHelpText
attribute), 10

W
write() (spintop_openhtf.plugs.comport.ComportInterface

method), 13

Index 87

	Getting Started
	Basic Concepts
	Python Installation

	Reference
	Test Plan
	Configuration
	Plugs

	1. First Testbench Tutorial
	Running a First Test Bench

	2. Web Interface Tutorial
	Exploration of the Interface
	Exploration of Past Results

	3. Forms and Tester Feedback Tutorial
	Using Custom Forms
	Extracting Data from the Custom Forms Responses
	Form Reference

	4. Test Bench Definition Tutorial
	Trigger Phase
	Test Case Declaration
	Logging in the Test Bench
	Test Flow Management

	5. Test Bench Documentation Tutorial
	Documenting a Test Case

	6. Proposed Project Structure
	Test Bench Source Files Categories
	Proposed Single-Repository Structure
	Proposed Multiple-Repository Structure

	7. Test Bench Configuration Tutorial
	Static configuration
	Test Station Configuration

	8. Plugs Tutorial
	About Plugs
	Using Plugs
	Creating Plugs
	Wrapping spintop-openhtf Plugs

	9. Test Criteria Tutorial
	Defining Test Criteria
	Criteria types
	Documentation
	Using a criteria definition file
	Dynamic Test Criteria

	10. Test Results Tutorial
	Exploring the Test Results
	Appending Data to Test Record

	Indices and tables
	Python Module Index
	Index

